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A B S T R A C T

Analyzing tradeoffs among ecological, economic, and management goals with respect to marine reserve network
design is an important facet of systematic conservation planning. We designed an integer linear programming
model to quantify tradeoffs among five marine reserve network aspects: ecological conservation value, economic
opportunity cost, geographic domain size, total reserve area, and reserve spatial compactness. Using ecological
and economic data from the Hawaiian deepwater bottomfish fishery as a case study, an integer linear pro-
gramming model was designed to choose areas that 1) maximize conservation value and 2) minimize oppor-
tunity cost, defined as foregone fisheries revenue. Compromise solutions that equally weighted conservation
value and opportunity cost resulted in solutions with dramatically lower foregone fisheries revenue and a re-
latively small loss in conservation value compared to solutions with the maximum conservation value. When
opportunity cost was assumed uniform across the spatial domain, solutions had considerably higher foregone
revenue for a given level of conservation value, highlighting the drawback of not including a spatially explicit
metric of opportunity cost in reserve selection models. Inclusion of only indicator species, rather than the entire
species complex, in the optimization led to considerable representation gaps in conservation value for non-
included species. We found that optimizations performed at the archipelago scale provided geographically
disproportionate reserve allocations and thus disproportionate conservation benefits and socioeconomic impacts
across geopolitically distinct island regions. We showed how reserve selection models can be used to support
systematic conservation planning exercises characterized by many diverse and conflicting objectives and parties.

1. Introduction

Spatial fishery closures, or marine reserves, are common instru-
ments in fisheries management and have increased in number and total
area in U.S. waters in the past 50 years (National Marine Protected
Areas Center (NMPAC, 2015). Marine reserves are concurrent with a
precautionary approach to fisheries management, hedging against the
uncertainties of the status of exploited populations, management lim-
itations, and long-term sustainability of fisheries (Lauck et al., 1998;
Hilborn et al., 2004; Grafton and Kompas, 2005). Although not a “pa-
nacea” in fisheries management (Hilborn et al., 2004; Almany et al.,
2013), reserves can be an effective component of a successful fisheries
management strategy. A common biological goal of marine reserves is
to provide spillover, the density-dependent net export of individuals
and reserve-sourced larvae from the reserve to fished areas (Gell and
Roberts, 2003; Gaines et al., 2010). Theoretical modelling and

simulation testing have both shown positive biological and fishery ef-
fects of marine reserves conditional on the biological and socio-
economic characteristics of the system (e.g., Botsford et al., 2003;
Hilborn et al., 2004; Lester et al., 2009; Edgar et al., 2014). Empirical
examples have additionally shown positive biological effects of spatial
protection (Roberts and Hawkins, 2000; Lester et al., 2009; Edgar et al.,
2014; Emslie et al., 2015).

Socioeconomic factors are similarly important and complex as en-
vironmental and biological factors with respect to marine reserve de-
sign (Mascia, 2004). In the short term, marine reserves can have con-
siderable negative economic impacts, especially if the most accessible
fishing grounds are closed or opportunities in other fisheries are less
valuable (Smith et al., 2010; Chen and Lopez-Carr, 2015). The fishing
opportunities in closed areas are either displaced to the open fished
areas (e.g., Mason et al., 2012; Murawski et al., 2005), a different
fishery, other non-fishing opportunities, or dissipates completely
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(Stevenson, 2013). The displacement of fishing effort undermines the
biological objective of reducing fishing mortality by potentially con-
centrating fishing pressure elsewhere (Halpern et al., 2004) or near the
boundaries of the reserves (Kellner et al., 2007). However, fishers who
cannot adjust to the reserve by either travelling farther to fishing
grounds (Hattam et al., 2014) or expending time to find new fishing
grounds may leave the fishery entirely. High discounting of future ex-
pectations of reserve impacts also undermines fishers’ perceptions of
potential reserve benefits (Smith et al., 2010; Hattam et al., 2014),
emphasizing the need to account for socioeconomic impacts during the
planning and design of reserve networks.

To balance many conflicting ecological, socioeconomic, and man-
agement goals, the design of marine reserves should involve the ana-
lysis of tradeoffs among these objectives as part of a systematic con-
servation planning process (Margules and Pressey, 2000). Explicit
analyses of tradeoffs can improve transparency in the marine reserve
design process by focusing on the most efficient solutions that maximize
sector values (e.g., via a Pareto frontier), reveal “inferior” management
options, and avoid unnecessary conflicts due to steep tradeoffs (White
et al., 2012). Methods in multi-criteria decision making (MCDM) aim to
quantify these tradeoffs to aid management decisions, with many ex-
amples in aquatic resource management (Villa et al., 2002; Leung,
2005; Lu et al., 2014; Farashi et al., 2016; Marre et al., 2016; Esmail
and Geneletti, 2018). Reserve selection models mathematically calcu-
late optimal reserves placements based on explicitly defined reserve
objectives (e.g., Ball et al., 2009; Oyafuso et al., 2019) and are the
means in which these tradeoffs can be analyzed. Understanding the
“hidden” impacts stemming from assumptions in the model affects the
interpretations of the model outputs and has clear implications to in-
forming decision making (Adams et al., 2010).

Opportunity cost in reserve selection models is generally defined as
the foregone activities, economic or otherwise, resulting from the
conversion of an area to a reserve. Opportunity cost can simply be
defined as total area, as marine reserves restrict spatial access, with
fishing being one of many potential foregone activities (e.g., Airame
et al., 2003; Klein et al., 2008a, 2008b; Ban and Klein, 2009). Many
other types of metrics can be used to explicitly define opportunity cost
across the spatial domain and are usually characterized by considerable
spatial variation (Balmford et al., 2003). In fisheries examples, oppor-
tunity cost is defined as catch or effort per unit area (Adams et al., 2011;
Klein et al., 2008a, 2008b), ex-vessel fishery revenue (Oyafuso et al.,
2019), or some proxy for fishing activity (Ban et al., 2009). In a data-
limited system, total area may be the best information available by
default, however assuming uniform opportunity cost across the spatial
domain in the reserve selection model leads to reserve solutions that
have higher impacts on other metrics of opportunity cost (Stewart and
Possingham, 2005). Less studied is the extent to which these opportu-
nity cost deficits are present when other objectives within the reserve
design process are considered.

Marine reserves restrict spatial access to a common fishery resource,
thus there are considerable social ramifications to the placement of
marine reserves. An important reserve design consideration is the al-
location of reserve area across geopolitical units (Sanchirico et al.,
2002; Jones, 2009; Klein et al., 2015). As important it is to spread the
ecological benefits of marine reserves across geopolitical units, it is also
important to spread the opportunity cost of marine reserves to achieve
equitable management strategies. In an archipelago setting, the non-
equal allocation of reserve area across islands can lead to an inequity of
opportunity costs and reserve benefits across users. Across broad con-
tiguous areas like a continental shelf, reserve placements can involve
state, federal, and possibly international jurisdictions. A key aspect to
incorporate equity into the reserve selection model is whether reserve
optimizations should be conducted at whole domain scales or at geo-
politically distinct scales and the resulting socioecological tradeoffs of
that decision.

It is advantageous to include as many conservation features, species,

and habitat types in the reserve model in order to maximize the eco-
logical potential of the marine reserve. However in data-limited sys-
tems, information on all possible conservation features of interest may
not be available to the reserve design team. In data-limited fisheries,
often certain “indicator” species are chosen to represent a species
complex to reduce the capacity needed to assess all species and because
these indicator species represent major life history traits of many co-
occurring species (Mouillot et al., 2002; Newman et al., 2016; Hill et al.,
2016). The same challenge exists in reserve selection model exercises
and it is uncertain to what extent indicator species provide an umbrella
effect (Lambeck, 1997; Roberge and Angelstam, 2004) to the species
complex where spatial data for all species of interest are not available.

We conducted a thorough analysis of the interactions and tradeoffs
of key objectives within the reserve design process: reserve area, op-
portunity cost, conservation value, and reserve shape compactness. A
binary integer linear programming model was constructed to select
areas that maximize conservation value and minimize opportunity cost.
We used the multispecies Hawaiian bottomfish fishery as a case study,
but the model is applicable to other systems. We considered nine fac-
torial scenarios consisting of combinations of three levels of total area
and three levels of spatial compactness to allow for different “spatial
budgets” to be visualized. Solving the reserve selection model resulted
in a Pareto frontier of optimal solutions which described the tradeoffs
between conservation value and opportunity cost for a given spatial
budget. Using this general model, we first examined the effects of as-
suming opportunity costs proportional to total area (“uniform oppor-
tunity cost”) versus opportunity costs related to fishing activity ("non-
uniform opportunity cost"). Second, we investigated the consequences
of only using a subset of indicator species representative of the majority
of the bottomfish fishery in the reserve selection model versus using all
species of interest with respect to species representation. The Hawaiian
bottomfish fishery is managed on an archipelago scale, but there are de
facto geopolitical island regions that dislocate the fishing fleet within
the main Hawaiian Islands. Thus, we lastly examined the equity of re-
serve allocations (i.e., the allocation of reserve benefits and impacts)
across island regions when reserve optimizations were conducted on an
archipelago versus island region scale.

2. Methods

2.1. Spatial domain

The commercial fishery for Hawaiian bottomfishes was used as a
case example and is a species complex of six deepwater snappers and
one deepwater grouper (known collectively as the Deep Seven bot-
tomfishes): hapuupuu (Hyporthodus quernus), ehu (Etelis carbunculus),
lehi (Aphareus rutilans), gindai (Pristipomoides zonatus), opakapaka (P.
filamentosus), onaga (E. coruscans), and kalekale (P. sieboldii). The do-
main of planning units (PUs) defined for the reserve selection model
was created by superimposing a 500 m × 500 m grid within 50–400 m
depth across the main Hawaiian Islands (dark grey shading in Fig. 1).
This depth range approximates the depth range of the species dis-
tribution maps that were used as data inputs (Oyafuso et al., 2017).
Regional optimizations were conducted separately within geo-
graphically convenient island regions, designated from northwest to
southeast as follows: (1) Kaula Rock, Niihau, and Kauai (KNK), (2)
Oahu, (3) Maui, Molokai, Kahoolawe, and Lanai islands (Maui Nui,
MN), and (4) Hawaii Island (HI) (Fig. 1). This resulted in 3733, 4753,
19629, and 8363 PUs for the KNK, OA, MN, and HI regions, respec-
tively.

2.2. Data sources

Conservation feature and opportunity cost data were similar to
those used by Oyafuso et al. (2019) extended to all four island regions.
Mean probability of occurrence predicted by habitat-based species
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distribution models created by Oyafuso et al. (2017) were calculated for
each PU in the spatial domain for each of the seven species. Opportu-
nity cost was defined as the mean annual Deep Seven bottomfish ex-
vessel fishery revenue collected from trip-level data provided by the
State of Hawaii from 1990 to 1996 (see Oyafuso et al. (2019) for more
detail). For the uniform opportunity cost scenarios, opportunity cost
was proportional to area. Thus on a lattice, the opportunity cost is equal
across PUs. Probability of occurrence for each species and revenue
across PUs for each island region are provided in the Supplementary
Material (Figs. S1–S4).

2.3. Binary integer linear programming model

A binary integer linear programming (ILP) model similar to Beyer
et al. (2016) and Oyafuso et al. (2019) was constructed for the selection
of reserve area from a domain of PUs subject to explicitly defined
structural constraints. First the objective functions of the model were
described followed by a description of the structural constraints.

2.3.1. Objective functions
Two objective functions were defined to describe the reserve se-

lection model: minimize opportunity cost and maximize conservation
value:

∑
=

x c Opportunity Costmin ( )
i
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i i
1
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Where xi is a binary decision variable (xi = 1 if the ith PU is included in
the reserve set, 0 otherwise), ci is the opportunity cost of reserving the
ith PU, ris is the predicted probability of occurrence value of the sth

species for the ith PU. N is the number of PUs.

2.3.2. Structural constraints (spatial budgets)
Two reserve objectives, total area and spatial compactness, were

treated as hard constraints rather than optimizable objective functions.
The decision to treat an objective as a constraint was for pragmatic
reasons. Total area of the reserve network is often treated as a tangible
target (e.g., 10%, 20%) of the spatial domain. Programmatically, the
total area of the reserve set was to be no more than one of three pro-
portions (A = 0.10, 0.20, or 0.30) of N:

∑ ≤
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The second structural constraint controlled the level of spatial
compactness, defined as the relative number of adjacent cell-to-cell
interactions of the PUs contained in the reserve set. The incorporation
of interactions among PUs involve the addition of quadratic expres-
sions, i.e., non-linear components, and thus is problematic in an ILP
framework. Beyer et al. (2016, but also see Billionnet, 2013) described
methods to linearize these non-linear terms by first adding a new de-
cision variable bij, and the total number of interactions is constrained to
be greater than one of three proportions =B and( 0.01, 0.50 1.0) of the
total number of adjacent cell-to-cell interactions in the domain (M):

∑ ≥
∈

b BM
i j E

ij
( , )

Where bij is an added binary decision variable that denotes the selection
of adjacent PUs i and j. E is the set of adjacent cell interactions in the
spatial domain of the PUs. The addition of each decision variable comes
with three additional constraints to ensure that = =x x 1i j if =b 1ij :

− ≤b x 0ij i

− ≤b x 0ij j

− − ≤ −b x x 1ij i j

The nine combinations of area and compactness constraints

Fig. 1. The spatial domain (dark grey) of the reserve selection model was defined as those waters surrounding the main Hawaiian Islands and Kaula Rock between
50–400 m at 500 m cell resolution (oriented north). The bold labels (KNK, Oahu, MN, and HI) denote the spatial domains of the island region-scale optimizations. The
non-bold labels are place names referenced in the text.
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represent different scenarios of “spatial budget,” i.e., the set of con-
straints that define the spatial extent of the reserve solutions.

2.3.3. Solving the linear programming model
The bi-objective ILP model was solved via the constraint method

(see Romero and Rehman (1989) for background). Briefly, one of the
objectives was optimized (i.e., opportunity cost) while the other ob-
jective (conservation value) was constrained to be greater than some a
priori proportion (C) of the total conservation value summed across
each of the PUs for each species:

∑ ∑≥
= =

x r C r
i

N

i is
i

N

is
1 1

The value of C was initially set at an arbitrarily low value (0.01),
then incremented by a set interval until the solution was infeasible,
tracing the entire range of conservation values for a given spatial
budget. Note that the value of C was constant across the species in-
cluded in the optimization model and different values of C among
species were not considered. The range of feasible solutions calculated
comprise the Pareto frontier (e.g., Fig. 2). Solutions on the Pareto
frontier are non-inferior to each other: increasing conservation value is
only possible by increasing opportunity cost; similarly decreasing op-
portunity cost is only possible by decreasing conservation value.

Optimizations were conducted using custom code modified from
Oyafuso et al. (2019) and Beyer et al. (2016) using the Gurobi Opti-
mizer (v.7.0) and the “gurobi” package in the R software environment.
A branch and bound algorithm was used to solve the ILP models with a
1% tolerance gap. Refer to Z. Oyafuso’s GitHub repository (github.com/
oyafusoz) for reserve selection ILP vignettes written in R using both
commercial software Gurobi and the open source GNU Linear Pro-
gramming Kit R package.

2.4. Compromise solution

Compromise programming is a distance-based method used to assist
the decision maker in narrowing down the set of feasible solutions on

the Pareto frontier. The best-compromise solution is defined as the
solution that is closest to the ideal point, the theoretical (i.e., non-ex-
istent) solution where all objectives are at their optimal values (Gray
point, Fig. 2). When objectives are in conflict, the ideal point is an in-
feasible solution. Solutions that are closer to the ideal point are con-
sidered more favorable with respect to the objectives, and the distance
(D) between a solution to the ideal point is quantified in the form of a
family of weighted distance measures (Romero and Rehman, 1989):
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Where Zj
* is the ideal value of the jth objective, Z j* is the anti-ideal

(nadir) point of the jth objective, Z x( ¯)j is the value of the jth objective of
a reserve set x̄ , and Wj is the weight given to the jth objective. J is the
total number of objectives (J = 2). The objectives are naively assumed
to be equally weighted in the calculation of the distance metrics and
were normalized by their respective distances between their ideal and
nadir points. The solution along the Pareto frontier with the shortest
distance to the ideal point is considered the compromise solution
hereafter (black filled point, Fig. 2). As the weight of the conservation
objective increases, the compromise solution converges to the solution
with the maximum conservation value (triangle point, Fig. 2) and si-
milarly with the opportunity cost objective (square point, Fig. 2).

3. Results

3.1. Opportunity cost scenarios

Across all scenarios, solutions with higher conservation values were
associated with higher foregone fisheries revenue (Fig. 3). For the non-
uniform opportunity cost solutions (solid lines, Fig. 3), foregone rev-
enue increased with conservation value across all nine spatial budgets.
The tradeoff between conservation value and foregone revenue varied
across different parts of the Pareto frontier, with very steep increases in
foregone revenue at higher levels of conservation value. For lower le-
vels of conservation value, large gains in conservation value were as-
sociated with relatively small increases in foregone revenue. The gen-
eral shape of this relationship was similar whether the optimization was
conducted on the archipelago versus the island region scale. Increasing
the level of compactness reduced the range of feasible conservation
values, with the maximum feasible conservation value decreasing with
higher levels of compactness.

Foregone fisheries revenue was not incorporated in the uniform
opportunity cost solutions, therefore the points plotted in Fig. 3 high-
lighted the consequences of not incorporating impacts to fisheries
revenue in the reserve selection model. All uniform opportunity cost
solutions were expectedly inferior to the Pareto frontier with respect to
foregone fisheries revenue. Similar to the non-uniform opportunity cost
solutions, higher conservation value solutions were associated with
higher foregone revenue. The relationship between conservation value
and foregone revenue was approximately linear.

3.2. Effects of only including indicator species in reserve optimizations

Conservation value was treated as a hard constraint, guaranteeing
the representation of each included species to at least the value of the
constraint. Some species had conservation values greater than the
conservation value constraint, i.e., were overrepresented relative to the
constraint value (above identity line, Fig. 4). Overrepresentation was
nearly consistent across conservation constraint values. When only in-
dicator species (onaga and opakapaka) were included in the reserve
selection model, the conservation value constraint only applied to those
two species, so it was possible for the non-included species to be un-
derrepresented (below identity line, Fig. 4). Overrepresentation for the

Fig. 2. Example diagram of the compromise solution along the Pareto frontier
with two objectives: opportunity cost (y-axis) and conservation value (x-axis).
The filled square and triangle points are the solutions with the lowest oppor-
tunity cost and highest conservation value, respectively, and the combination of
those optimal values (gray filled circle) is the ideal point. The solution with the
shortest distance to the ideal point (filled black point) is the compromise so-
lution that is referred to in the text.
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onaga-opakapaka only scenarios was apparent for lower conservation
value constraints.

3.3. Effects of domain scale on the equity of solutions

Regionally-optimized placements offered similar quantities of area,

foregone revenue, and species-specific conservation value across island
regions (Fig. 5, left). Using the 30% total area, high compactness so-
lution as an example, regionally optimized solutions represented
roughly 30% of the total conservation value across species and 5–10%
of the total fisheries revenue. When conducted at the archipelago scale,
higher proportions of the spatial domain were allocated to the Hawaii

Fig. 3. Opportunity cost (relative foregone fisheries revenue) across varying levels of conservation values outputted from reserve selection models under three
different levels of total area (rows) and compactness (columns) for the archipelago-scale optimizations. Solid lines denote solutions with fisheries revenue as the
opportunity cost and open points denote solutions with area as the opportunity cost.

Fig. 4. Range of conservation values across species for a given level of the conservation value constraint for the two species representation scenarios. The vertical
spaces above and below the identity line represents the levels of over- and under-representation, respectively, relative to the conservation value constraint. Only
solutions within the high compactness scenario across the three total area scenarios were considered.
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Island region relative to the Oahu and Maui Nui regions. Nearly 50% of
the PUs in the Hawaii Island region were chosen whereas less than 10%
of the PUs in the Oahu region were allocated. The imbalance of PUs
allocated across island regions translated to similar imbalances of
foregone revenue and representation of the seven species (Fig. 5, right).

3.4. Compromise between opportunity cost and conservation value

The compromise solution we chose to highlight equally weighted
foregone revenue and conservation value update. The percent-decrease
in foregone revenue from the maximum conservation value to the
compromise solutions varied across island region but ranged from 49-
85% (Table 1). The steepest drops in foregone revenue were in the
magnitude of 105 for the Hawaii Island optimizations, which is sub-
stantial given the economic scale of this fishery. The concomitant de-
crease in conservation value ranged from 6–25%. When optimized at
the archipelago scale, optimizations were lower in foregone revenue
than the sum of the foregone revenue of the island region optimizations,
while providing higher overall species representation. For example, for
the 10% total area, high compactness solutions, archipelagic place-
ments had a foregone revenue value of $101021 and a conservation
value of 0.142, but when calculated by island region, the total foregone
revenue across regions was $161501 and conservation values ranging
0.105-0.128. The total archipelagic foregone revenue of the compro-
mise solution was similar regardless of the geographic scale of the op-
timization, however the conservation value of the archipelagic-scale
optimization was slightly higher than the range of the regional-scale
optimizations.

The linear slope between compromise and maximum conservation

value solutions ($106 per unit conservation value) is one way to
quantify the tradeoff between lost fisheries revenue and conservation
value. Using the KNK 30% total area scenario as an example, shifting
from the maximum conservation value solution to the compromise
solution resulted in a< $106 reduction of the foregone revenue per unit
decrease in conservation value, or an absolute reduction in foregone
revenue of ∼ $17 × 105 and a 0.03 reduction in conservation value.
Tradeoffs were lower in the KNK and HI regions (0.263–1.27) and were
highest in the Oahu and MN regions (1.51–4.26). Archipelago-scale
optimizations had the highest slopes values between 3.27–4.74.

3.5. Reserve placements

Kaula Rock-Niihau-Kauai: The northern coast of Kauai was included
in the compromise solutions at both island region and archipelago-scale
optimizations. For the maximum conservation value solutions, PUs
around the island of Niihau (eastern portion) and Kaula Rock were
almost exclusively chosen in the archipelago-scale optimizations.

Oahu: At the island region level, the maximum conservation value
solutions initially chose PUs at the northwestern tip of the island for the
10% area scenario, then shifted to the eastern, southern, and north-
western portions of the island for the 20 and 30% area scenarios.
Compromise solutions selected areas in the northwestern and southern
parts of the island. When solved at the archipelago level, PUs around
Oahu were included at a lower proportion, however similar areas were
generally selected.

Maui Nui: Island region and archipelago-scale optimizations resulted
in similar placements in the Maui Nui region. Maximum conservation
value solutions selected areas in Penguin Banks, North and East

Fig. 5. Total area, opportunity cost and spe-
cies-specific conservation values across island
(bar colors) for the most compact solutions at
20% total area conducted at the island region-
scale (left column) versus the archipelago-scale
(right column). Objective values are presented
as proportions of their respective total values.
Legend for the x-axis is as follows: Area: total
area; Rev: foregone fisheries revenue; con-
servation values for H: Hapuupuu (Hyporthodus
quernus); E: Ehu (Etelis carbunculus); L: Lehi
(Aphareus rutilans); G: Gindai (Pristipomoides
zonatus); P: Opakapaka (P. filamentosus); O:
Onaga (E. coruscans); and Kalekale (P. sie-
boldii).

Table 1
Opportunity cost (foregone revenue) and conservation value for the maximum conservation value (Max. Cons) and compromise solutions. Solution attributes are
shown for the most spatially compact solutions at 10, 20, and 30% total area for each island region (KNK: Kaula Rock-Niihau-Kauai; MN: Maui Nui; HI: Hawaii
Island). The slope defines the reduction of foregone value ($106) per unit reduction in conservation value when shifting from the Max. Cons. to compromise solutions.

10% Area 20% Area 30% Area

Region Solution Type Foregone Revenue ($) Conservation Value Foregone Revenue ($) Conservation Value Foregone Revenue ($) Conservation Value

KNK Max. Cons. 12,670 0.112 12,408 0.222 28,404 0.332
Compromise 3,213 0.100 6,360 0.199 11,230 0.301
Slope 0.788 0.263 0.554

Oahu Max. Cons. 34,756 0.105 42,359 0.215 51,457 0.325
Compromise 4,903 0.098 9,880 0.202 16,648 0.302
Slope 4.26 2.50 1.51

MN Max. Cons. 88,960 0.128 174,192 0.254 221,662 0.363
Compromise 20,532 0.102 53,233 0.214 82,157 0.311
Slope 2.63 3.02 2.68

HI Max. Cons. 25,115 0.116 41,739 0.229 42,270 0.339
Compromise 4,746 0.100 9,456 0.198 16,118 0.299
Slope 1.27 1.04 0.654

Archipelago Max. Cons. 101,021 0.142 240,297 0.268 318,313 0.381
Compromise 35,576 0.122 74,403 0.233 112,594 0.336
Slope 3.27 4.74 4.57
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Molokai, and the PUs enclosed among the island of Kahoolawe, Lanai,
and Maui. Compromise solutions chosen PUs enclosed among the island
of Kahoolawe, Lanai, and Maui and areas north and northeast of Maui.
Maximum conservation solutions tended to choose PUs closer to Maui
while compromise solutions chose PUs more offshore of Maui.

Hawaii Island: PUs in Hawaii Island were disproportionately chosen
when the optimization was conducted at the archipelago level (> 50%
of Hawaii Island for the 30% area scenario, Fig. 5). Compromise solu-
tions at the archipelago-scale selected most of the PUs surrounding
Hawaii Island except for the northwestern portion of the island. Max-
imum conservation value solutions selected areas on the northern tip
and southern parts of the island. There was considerable overlap be-
tween these two solutions, with the exception of the broad areas on the
northeastern part of the island. When solved at the island region level,
compromise solutions selected areas on the eastern portions of the is-
land. Maximum conservation value solutions selected areas on the
northwestern portion of the island and extended in overlapping areas
with the compromise solutions on the eastern side of the island.

4. Discussion

A major strength of this analysis stems from the ability to evaluate
major assumptions and data sensitivities via the reserve selection
model. For example, ignoring the spatial variability in opportunity cost
by assuming area as the opportunity cost led to inferior solutions when
compared to the Pareto frontier estimated from assuming fisheries
revenue as opportunity cost. While this pattern was also observed in

previous analyses (Stewart and Possingham, 2005; Klein et al., 2008b),
we observed this pattern for the entire range of feasible conservation
values. This study is concurrent with conclusions from previous work
on the importance of high-resolution socioeconomic data in reserve
selection models to reduce the potential socioeconomic impacts of re-
serves (Richardson et al., 2006; Ban et al., 2009). That said, we only
accounted for two types of opportunity costs: spatial access (total area)
and foregone revenue. Other forms of opportunity cost, e.g., recrea-
tional fishing opportunities, recreational use areas, distance cost (Zhang
et al., 2011), as well as conservation costs, e.g., management, acquisi-
tion, damage, and start-up costs of MPA establishment (McCrea-Strub
et al., 2011; Naidoo et al., 2006) could also be integrated into the
analysis by explicitly defining them as objectives. Then, an analysis
could be designed to investigate the tradeoffs among the different
sources of opportunity cost.

Understanding the effect of using surrogate species in reserve se-
lection models due to data limitations or practical management needs
of using indicator species to represent a larger subset of species is im-
portant when designing the conservation objectives. When only a
subset of the species was included to represent the species complex,
there were considerable representation gaps for the excluded species.
Fig. 4 showed the ranges of underrepresentation across non-included
species, especially when high conservation value constraints were
placed on the indicator species. Even for a small set of species, using
indicator species led to some species with less protection due to the
differences in utilized habitat among the species in the complex
(Oyafuso et al., 2017). As a result, the realized conservation value of the

Fig. 6. Placements of reserve solutions conducted at the archipelago-scale corresponding to the maximum conservation value (red) and compromise (blue) solutions
(oriented north). Only the most compact solutions are shown for each total area scenario. Purple areas denote the spatial overlap of the two solutions. The bottom-left
inset shows the Pareto frontiers for each spatial budget, highlighting the tradeoff between conservation value and opportunity cost (foregone revenue) under non-
uniform opportunity cost. The red and blue points on the frontiers correspond to the placements of the maximum conservation value and compromise solutions,
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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reserve when only including indicator species was lower than the all-
species scenario for a given conservation value constraint. The under-
represented species were those that negatively co-varied with the in-
cluded species, so it is important that choice of indicator species best
represents the various types of biological features of interest (Caro and
O’Doherty, 1999). Without information on species distributions, an-
other tactic is to use surrogates for species distributions (e.g., habitat
features, environmental diversity; Faith and Walker, 1996; Araújo
et al., 2008).

The most widely known and used reserve selection software is
Marxan (Ball et al., 2009) which heuristically calculates the lowest
opportunity cost reserve solution given specified conservation re-
presentation targets. In this analysis, the minimum set problem was
iteratively solved similar to Marxan, but across the entire feasible range
of conservation values instead of choosing a priori conservation targets.
This served two purposes: 1) the range of possible conservation values
can be evaluated and 2) possible socioeconomic ramifications can be
visualized on the Pareto frontier. Thus, this type of analysis can provide
more informed and realistic conservation representation goals. What is
uncertain from our analysis is the interpretation of the conservation
value objective (Williams et al., 2005). Framing all the objectives of the
reserve selection model to tangible quantities used in fisheries man-
agement, e.g., biomass, abundance, fleet size, profit, closely connects
calculated reserve solutions to management objectives. Work is in
progress to understand how the level of conservation value of a reserve
network translates biologically to populations when implemented over
time (Oyafuso et al., unpublished).

The conflict of reserve objectives leads to no one solution being
perfectly satisfactory, but rather a set of optimal solutions as outlined
by the Pareto frontier. Compromise programming can provide decision
support by subsetting the range of relevant Pareto-optimal solutions
based on the preferences of the design team. Our compromise solution
assumed equal weight preference between relative levels of conserva-
tion value and socioeconomic opportunity cost. We felt this solution
was the most intuitive, as this solution provided the highest level of
conservation value just before steep tradeoff in opportunity cost, as
visualized by the Pareto frontier (FigsFig. 2 6, 7 Fig. 6 Fig. 7). This
resulted in a steep tradeoff of roughly $106 more impact to the fishery
per unit gain in conservation value. While useful to informing man-
agement, the preferences of the reserve design team (e.g. via in-
difference curves) should be incorporated to determine the appropriate
weights for considering other optimal solutions on the Pareto frontier.

When optimizing reserve solutions, the scale at which optimizations
were conducted affected the equity of conservation benefits and so-
cioeconomic impacts across island regions. Fair allocation of accessible
fishing grounds among spatially or geopolitically distinct fisher groups
is an important social consideration of reserve planning (Sanchirico
et al., 2002; Blaustein, 2007; Jones, 2009). Although the Hawaiian
bottomfish fishery is managed at the state (archipelagic) level, there are
de facto political and geographic island region distinctions that dis-
locate the spatial distribution of the fishing fleet. This concept can be
extended to broader, contiguous areas where the spatial domain con-
tains nearshore versus offshore fleets, or domestic or international
jurisdictions. Accounting for outcome equity among island regions in

Fig. 7. Placements of reserve solutions conducted at the island region-scale corresponding to the maximum conservation value (red) and compromise (blue) solutions
(oriented north). Only the most compact solutions are shown for each total area scenario. Purple areas denote the spatial overlap of the two solutions. The bottom-left
inset shows the pareto frontiers for each spatial budget, highlighting the tradeoff between conservation value and opportunity cost (foregone revenue) under non-
uniform opportunity cost. The red and blue points on the frontiers correspond to the placements of the maximum conservation value and compromise solutions,
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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our study led to solutions with conservation values and socioeconomic
impacts that were slightly less optimal (when aggregated at the archi-
pelago scale) than scenarios where spatial equity was ignored. The re-
lationship between equity and reserve success is an important feature to
address in the marine reserve design process (Halpern et al., 2013; Klein
et al., 2015), with reserve selection models being the tools in which
these tradeoffs can be explored. Other types of input and output equity
measures, along with measures of absolute and relative equity (Klein
et al., 2015) not addressed here can also be the focus of future work.

The aggregation objective was related to how chosen planning units
were arranged, but indirectly addressed the issue of minimum patch
size. The high-compactness sceanrios provided large and spatially
clumped solutions, but the extent to which patch sizes will be biolo-
gically meaningful was not addressed. Some workers have included the
size of clusters, groups of adjacent PUs, into spatial optimization models
(Rebain and McDill, 2003; Constantino et al., 2008). The MinPatch
algorithm is a software that reshapes reserve networks outputted from
Marxan to meet a user-defined minimum patch area (Smith et al.,
2010). Patch size, shape, and distribution are independent qualities, so
although the addition of minimum patch area constraints would be an
attractive feature of linear reserve selection models, it will not address
other important spatial reserve attributes. Although there have been
extensive reviews on reserve shape in reserve design and selected
models (Williams et al., 2004, 2005), future work should directly
compare different formulations of reserve shape in reserve selection
models. Regardless of the function that is used to control reserve shape,
it is the task of fisheries managers, along with scientists, fishers, and
enforcement bodies to agree on reserve shapes and boundaries that are
clear and culturally appropriate. The goal of reserve selection models is
to provide guidance and not direct management recommendations for
reserve design. The advantage of this approach is that although any
spatial alterations of solutions for logistical purposes would technically
be less optimal than the reserve solution, the gap between the reserve
solution and the post hoc altered reserves can be quantified and
documented.

We have presented an example of a type of tradeoff analysis that can
used to guide the decision-making process for the creation of marine
reserves. The types of data inputs used required synthesizing spatially
explicit information about the activities that occurred within the spatial
domain of the marine reserves, i.e., bottomfishing, as well as informa-
tion of the conservation features of interest. Formulating the problem
into an ILP model resulted in relatively fast and exact solutions (or
rather, near-exact solutions with calculated levels of suboptimality).
The relatively quick computation times of linear problems was integral
to tracing the various tradeoffs within a multi-objective exercise (Beyer
et al., 2016). The calculation of the Pareto frontier of solutions can
guide discussions of different reserve placements under different pre-
ferences for each objective as well as highlight relevant tradeoffs of
particular aspects, sensitivities, and assumptions of the reserve design
problem.

Declaration of Competing Interest

This statement is to confirm that all authors do not have any con-
flicts of interest.

Acknowledgements

The authors thank J. Drazen and two anonymous reviewers for
improving this manuscript. Funding provided by the NMFS-Sea Grant
Population and Ecosystem Dynamics Fellowship award
#NA16OAR4170184 (to ZSO) and NOAA award #NA10NMF4520163
(to ECF). This is University of Hawaii School of Ocean and Earth
Science and Technology (SOEST) Publication 10838 and Hawaii
Institute of Marine Biology (HIMB) Contribution 1775.

References

Adams, V., Pressey, R., Naidoo, R., 2010. Opportunity costs: who really pays for con-
servation? Biol. Conserv. 143, 439–448. https://doi.org/10.1016/j.biocon.2009.11.
011.

Adams, V.M., Mills, M., Jupiter, S.D., Pressey, R.L., 2011. Improving social acceptability
of marine protected area networks: a method for estimating opportunity costs to
multiple gear types in both fished and currently unfished areas. Biol. Conserv. 144,
350–361. https://doi.org/10.1016/j.biocon.2010.09.012.

Airame, S., Dugan, J.E., Lafferty, K.D., Leslie, H., McArdle, D.A., Warner, R.R., 2003.
Applying ecological criteria to marine reserve design: a case study from the California
Channel Islands. Ecol. Soc. Am. 13, 170–184. https://doi.org/10.1890/1051-
0761(2003)013[0170:AECTMR]2.0.CO;2.

Almany, Glenn R., Hamilton, Richard J., Bode, M., Matawai, M., Potuku, T., Saenz-
Agudelo, P., Planes, S., Berumen, Michael L., Rhodes, Kevin L., Thorrold, Simon R.,
Russ, Garry R., Jones, Geoffrey P., 2013. Dispersal of grouper larvae drives local
resource sharing in a coral reef fishery. Curr. Biol. 23, 626–630. https://doi.org/10.
1016/j.cub.2013.03.006.

Araújo, M.B., Humphries, C.J., Densham, P.J., Lampinen, R., Hagemeijer, W.J.M.,
Mitchell-Jones, A.J., Gasc, J.P., 2008. Would environmental diversity be a good
surrogate for species diversity? Ecography 24, 103–110. https://doi.org/10.1034/j.
1600-0587.2001.240112.x.

Ball, I.R., Possingham, H.P., Watts, M., 2009. Marxan and relatives: software for spatial
conservation prioritisation. In: Moilanen, A., Wilson, K.A., Possingham, H. (Eds.),
Spatial Conservation Prioritisation: Quantitative Methods and Computational Tools.
Oxford University Press, Oxford.

Balmford, A., Gaston, K.J., Blyth, S., James, A., Kapos, V., 2003. Global variation in
terrestrial conservation costs, conservation benefits, and unmet conservation needs.
Proc. Natl. Acad. Sci. U. S. A. 100, 1046–1050. https://doi.org/10.1073/pnas.
0236945100.

Ban, N.C., Hansen, G.J., Jones, M., Vincent, A.C., 2009. Systematic marine conservation
planning in data-poor regions: socioeconomic data is essential. Mar. Policy 33,
794–800. https://doi.org/10.1016/j.marpol.2009.02.011.

Ban, N.C., Klein, C.J., 2009. Spatial socioeconomic data as a cost in systematic marine
conservation planning. Conserv. Lett. 2, 206–215. https://doi.org/10.1111/j.1755-
263X.2009.00071.x.

Beyer, H.L., Dujardin, Y., Watts, M.E., Possingham, H.P., 2016. Solving conservation
planning problems with integer linear programming. Ecol. Model. 328, 14–22.
https://doi.org/10.1016/j.ecolmodel.2016.02.005.

Billionnet, A., 2013. Mathematical optimization ideas for biodiversity conservation. Eur.
J. Oper. Res. 231, 514–534. https://doi.org/10.1016/j.ejor.2013.03.025.

Blaustein, R.J., 2007. Protected areas and equity concerns. BioScience 57, 216–221.
https://doi.org/10.1641/B570303.

Botsford, L.W., Micheli, F., Hastings, A., 2003. Principles for the design of marine re-
serves. Ecol. Appl. 13, 25–31. https://doi.org/10.1890/1051-0761(2003)
013[0025:PFTDOM]2.0.CO;2.

Caro, T.M., O’Doherty, G., 1999. On the use of surrogate species in conservation biology.
Conserv. Biol. 13, 805–814. https://doi.org/10.1046/j.1523-1739.1999.98338.x.

Chen, C., Lopez-Carr, D., 2015. The importance of place: unraveling the vulnerability of
fisherman livelihoods to the impact of marine protected areas. Appl. Geogr. 59,
88–97. https://doi.org/10.1016/j.apgeog.2014.10.015.

Constantino, M., Martins, I., Borges, J.G., 2008. A new mixed-integer programming model
for harvest scheduling subject to maximum area restrictions. Oper. Res. 56, 542–551.
https://doi.org/10.1287/opre.1070.0472.

Edgar, G.J., Stuart-Smith, R.D., Willis, T.J., Kininmonth, S., Baker, S.C., Banks, S., Barrett,
N.S., Becerro, M.A., Bernard, A.T.F., Berkhout, J., Buxton, C.D., Campbell, S.J.,
Cooper, A.T., Davey, M., Edgar, S.C., Försterra, G., Galván, D.E., Irigoyen, A.J.,
Kushner, D.J., Moura, R., Parnell, P.E., Shears, N.T., Soler, G., Strain, E.M.A.,
Thomson, R.J., 2014. Global conservation outcomes depend on marine protected
areas with five key features. Nature 506, 216. https://doi.org/10.1038/nature13022.

Emslie, Michael J., Logan, M., Williamson, David H., Ayling, Anthony M., MacNeil, M.A.,
Ceccarelli, D., Cheal, Alistair J., Evans, Richard D., Johns, Kerryn A., Jonker, Michelle
J., Miller, Ian R., Osborne, K., Russ, Garry R., Sweatman, Hugh P.A., 2015.
Expectations and outcomes of reserve network performance following Re-zoning of
the great barrier reef marine park. Curr. Biol. 25, 983–992. https://doi.org/10.1016/
j.cub.2015.01.073.

Esmail, B.A., Geneletti, D., 2018. Multi‐criteria decision analysis for nature conservation:
a review of 20 years of applications. Methods Ecol. Evol. 9, 42–53. https://doi.org/
10.1111/2041-210X.12899.

Faith, D.P., Walker, P.A., 1996. Environmental diversity: on the best-possible use of
surrogate data for assessing the relative biodiversity of sets of areas. Biodivers.
Conserv. 5, 399–415. https://doi.org/10.1007/BF00056387.

Farashi, A., Naderi, M., Parvian, N., 2016. Identifying a preservation zone using mul-
ti–criteria decision analysis. Anim. Biodiv. Conserv. 39, 29–36. https://doi.org/10.
32800/abc.2016.39.0029.

Gaines, S.D., White, C., Carr, M.H., Palumbi, S.R., 2010. Designing marine reserve net-
works for both conservation and fisheries management. Proc. Natl. Acad. Sci. U. S. A.
107, 18286–18293. https://doi.org/10.1073/pnas.0906473107.

Gell, F.R., Roberts, C.M., 2003. Benefits beyond boundaries: the fishery effects of marine
reserves. Trends Ecol. Evol. 18, 448–455. https://doi.org/10.1016/S0169-5347(03)
00189-7.

Grafton, R.Q., Kompas, T., 2005. Uncertainty and the active adaptive management of
marine reserves. Mar. Policy 29, 471–479. https://doi.org/10.1016/j.marpol.2004.
07.006.

Halpern, B.S., Gaines, S.D., Warner, R.R., 2004. Confounding effects of the export of

Z.S. Oyafuso, et al. Biological Conservation 241 (2020) 108319

9

https://doi.org/10.1016/j.biocon.2009.11.011
https://doi.org/10.1016/j.biocon.2009.11.011
https://doi.org/10.1016/j.biocon.2010.09.012
https://doi.org/10.1890/1051-0761(2003)013[0170:AECTMR]2.0.CO;2
https://doi.org/10.1890/1051-0761(2003)013[0170:AECTMR]2.0.CO;2
https://doi.org/10.1016/j.cub.2013.03.006
https://doi.org/10.1016/j.cub.2013.03.006
https://doi.org/10.1034/j.1600-0587.2001.240112.x
https://doi.org/10.1034/j.1600-0587.2001.240112.x
http://refhub.elsevier.com/S0006-3207(19)30396-9/sbref0030
http://refhub.elsevier.com/S0006-3207(19)30396-9/sbref0030
http://refhub.elsevier.com/S0006-3207(19)30396-9/sbref0030
http://refhub.elsevier.com/S0006-3207(19)30396-9/sbref0030
https://doi.org/10.1073/pnas.0236945100
https://doi.org/10.1073/pnas.0236945100
https://doi.org/10.1016/j.marpol.2009.02.011
https://doi.org/10.1111/j.1755-263X.2009.00071.x
https://doi.org/10.1111/j.1755-263X.2009.00071.x
https://doi.org/10.1016/j.ecolmodel.2016.02.005
https://doi.org/10.1016/j.ejor.2013.03.025
https://doi.org/10.1641/B570303
https://doi.org/10.1890/1051-0761(2003)013[0025:PFTDOM]2.0.CO;2
https://doi.org/10.1890/1051-0761(2003)013[0025:PFTDOM]2.0.CO;2
https://doi.org/10.1046/j.1523-1739.1999.98338.x
https://doi.org/10.1016/j.apgeog.2014.10.015
https://doi.org/10.1287/opre.1070.0472
https://doi.org/10.1038/nature13022
https://doi.org/10.1016/j.cub.2015.01.073
https://doi.org/10.1016/j.cub.2015.01.073
https://doi.org/10.1111/2041-210X.12899
https://doi.org/10.1111/2041-210X.12899
https://doi.org/10.1007/BF00056387
https://doi.org/10.32800/abc.2016.39.0029
https://doi.org/10.32800/abc.2016.39.0029
https://doi.org/10.1073/pnas.0906473107
https://doi.org/10.1016/S0169-5347(03)00189-7
https://doi.org/10.1016/S0169-5347(03)00189-7
https://doi.org/10.1016/j.marpol.2004.07.006
https://doi.org/10.1016/j.marpol.2004.07.006


production and the displacement of fishing effort from marine reserves. Ecol. Appl.
14, 1248–1256. https://doi.org/10.1890/03-5136.

Halpern, B.S., Klein, C.J., Brown, C.J., Beger, M., Grantham, H.S., Mangubhai, S.,
Ruckelshaus, M., Tulloch, V.J., Watts, M., White, C., Possingham, H.P., 2013.
Achieving the triple bottom line in the face of inherent trade-offs among social
equity, economic return, and conservation. Proc. Natl. Acad. Sci. U. S. A. 110,
6229–6234. https://doi.org/10.1073/pnas.1217689110.

Hattam, C.E., Mangi, S.C., Gall, S.C., Rodwell, L.D., 2014. Social impacts of a temperate
fisheries closure: understanding stakeholders’ views. Mar. Policy 45, 269–278.
https://doi.org/10.1016/j.marpol.2013.09.005.

Hilborn, R., Stokes, K., Maguire, J.-J., Smith, T., Botsford, L.W., Mangel, M., Orensanz, J.,
Parma, A., Rice, J., Bell, J., Cochrane, K.L., Garcia, S., Hall, S.J., Kirkwood, G.P.,
Sainsbury, K., Stefansson, G., Walters, C., 2004. When can marine reserves improve
fisheries management? Ocean Coast Manage. 47, 197–205. https://doi.org/10.1016/
j.ocecoaman.2004.04.001.

Hill, N.J., Williams, A.J., Peatman, T., Nicol, S.J., Halafihi, T., 2016. Development of a
harvest strategy for resource-limited deepwater snapper fisheries. Pacific Community
(SPC). https://doi.org/10.13140/RG.2.1.2861.5447.

Jones, P.J.S., 2009. Equity, justice and power issues raised by no-take marine protected
area proposals. Mar. Policy 33, 759–765. https://doi.org/10.1016/j.marpol.2009.02.
009.

Kellner, J.B., Tetreault, I., Gaines, S.D., Nisbet, R.M., 2007. Fishing the line near marine
reserves in single and multispecies fisheries. Ecol. Appl. 17, 1039–1054. https://doi.
org/10.1890/05-1845.

Klein, C.J., Chan, A., Kircher, L., Cundiff, A.J., Gardner, N., Hrovat, Y., Scholz, A.,
Kendall, B.E., Airamé, S., 2008a. Striking a balance between biodiversity conserva-
tion and socioeconomic viability in the design of marine protected areas. Conserv.
Biol. 22, 691–700. https://doi.org/10.1111/j.1523-1739.2008.00896.x.

Klein, C.J., Steinback, C., Scholz, A.J., Possingham, H.P., 2008b. Effectiveness of marine
reserve networks in representing biodiversity and minimizing impact to fishermen: a
comparison of two approaches used in California. Conserv. Lett. 1, 44–51. https://
doi.org/10.1111/j.1755-263X.2008.00005.x.

Klein, C.J., McKinnon, M.C., Wright, B.T., Possingham, H.P., Halpern, B.S., 2015. Social
equity and the probability of success of biodiversity conservation. Global Environ.
Change 35, 299–306. https://doi.org/10.1016/j.marpol.2009.02.009.

Lambeck, R.J., 1997. Focal species: a multi-species umbrella for nature conservation.
Conserv. Biol. 11, 849–856. https://doi.org/10.1046/j.1523-1739.1997.96319.x.

Lauck, T., Clark, C.W., Mangel, M., Munro, G.R., 1998. Implementing the precautionary
principle in fisheries management through marine reserves. Ecol. Appl. 8, 72–78.
https://doi.org/10.1890/1051-0761(1998)8[S72:ITPPIF]2.0.CO;2.

Lester, S.E., Halpern, B.S., Grorud-Colvert, K., Lubchenco, J., Ruttenberg, B.I., Gaines,
S.D., Airamé, S., Warner, R.R., 2009. Biological effects within no-take marine re-
serves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46. https://doi.org/10.3354/
meps08029.

Leung, P., 2005. Multiple-criteria decision-making (MCDM) applications in fishery
management. Int. J. Environ. Technol. Manag. 6, 96–110. https://doi.org/10.1504/
IJETM.2006.008255.

Lu, S.Y., Shen, C.H., Chiau, W.Y., 2014. Zoning strategies for marine protected areas in
Taiwan: case study of Gueishan Island in Yilan County, Taiwan. Mar. Policy 48,
21–29. https://doi.org/10.1016/j.marpol.2014.03.001.

Margules, C.R., Pressey, R.L., 2000. Systematic conservation planning. Nature 405, 243.
https://doi.org/10.1038/35012251.

Marre, J.‐B., Pascoe, S., Thébaud, O., Jennings, S., Boncoeur, J., Coglan, L., 2016.
Information preferences for the evaluation of coastal development impacts on eco-
system services: a multi‐criteria assessment in the Australian context. J. Environ.
Manag. 173, 141–150. https://doi.org/10.1016/j.jenvman.2016.01.025.

Mascia, M.B., 2004. Social dimensions of marine reserves. In: Sobel, J., Dahlgren, C.
(Eds.), Marine Reserves: a Guide to Science, Design, and Use. Island Press,
Washington D.C.

Mason, J., Kosaka, R., Mamula, A., Speir, C., 2012. Effort changes around a marine re-
serve: the case of the California Rockfish Conservation Area. Mar. Policy 36,
1054–1063. https://doi.org/10.1016/j.marpol.2012.03.002.

McCrea-Strub, A., Zeller, D., Sumaila, U.R., Nelson, J., Balmford, A., Pauly, D., 2011.
Understanding the cost of establishing marine protected areas. Mar. Policy 35, 1–9.
https://doi.org/10.1016/j.marpol.2010.07.001.

Mouillot, D., Culioli, J.M., Chi, T.D., 2002. Indicator species analysis as a test of non-
random distribution of species in the context of marine protected areas. Environ.
Conserv. 29, 385–390. https://doi.org/10.1017/S0376892902000267.

Murawski, S.A., Wigley, S.E., Fogarty, M.J., Rago, P.J., Mountain, D.G., 2005. Effort
distribution and catch patterns adjacent to temperate MPAs. ICES J. Mar. Sci. 62,
1150–1167. https://doi.org/10.1016/j.icesjms.2005.04.005.

Naidoo, R., Balmford, A., Ferraro, P.J., Polasky, S., Ricketts, T.H., Rouget, M., 2006.
Integrating economic costs into conservation planning. Trends Ecol. Evol. 21,
681–687. https://doi.org/10.1016/j.tree.2006.10.003.

National Marine Protected Areas Center (NMPAC), 2015. Framework for the National
System of Marine Protected Areas of the United States of America. Silver Spring, MD.

Newman, S.J., Williams, A.J., Wakefield, C.B., Nicol, S.J., Taylor, B.M., O’Malley, J.M.,
2016. Review of the life history characteristics, ecology and fisheries for deep-water
tropical demersal fish in the Indo-Pacific region. Rev. Fish. Biol. Fish. 26, 537–562.
https://doi.org/10.1007/s11160-016-9442-1.

Oyafuso, Z.S., Drazen, J.C., Moore, C.H., Franklin, E.C., 2017. Habitat-based species
distribution modelling of the Hawaiian deepwater snapper-grouper complex. Fish.
Res. 195, 19–27. https://doi.org/10.1016/j.fishres.2017.06.011.

Oyafuso, Z.S., Leung, P., Franklin, E.C., 2019. Evaluating bioeconomic tradeoffs of fishing
reserves via spatial optimization. Mar. Policy 100, 163–172. https://doi.org/10.
1016/j.marpol.2018.11.016.

Rebain, S., McDill, M.E., 2003. A mixed-integer formulation of the minimum patch size
problem. Forest Sci. 49, 608–618. https://doi.org/10.1093/forestscience/49.4.608.

Richardson, E.A., Kaiser, M.J., Edwards-Jones, G., Possingham, H.P., 2006. Sensitivity of
marine reserve design to the spatial resolution of socioeconomic data. Conserv. Biol.
20, 1191–1202. https://doi.org/10.1111/j.1523-1739.2006.00426.x.

Roberge, J.M., Angelstam, P., 2004. Usefulness of the umbrella species concept as a
conservation tool. Conserv. Biol. 18, 76–85. https://doi.org/10.1111/j.1523-1739.
2004.00450.x.

Roberts, C., Hawkins, J.P., 2000. WWF endangered seas campaign Washington, DC. Fully-
protected Marine Reserves: A Guide.

Romero, C., Rehman, T., 1989. Agricultural Decision Analysis with Multiple Criteria,
second ed. Elsevier, Amsterdam.

Sanchirico, J.N., Cochran, K.A., Emerson, P.M., 2002. Marine Protected Areas: Economic
and Social Implications. Resources for the Future, Washington D.C.

Smith, M.D., Lynham, J., Sanchirico, J.N., Wilson, J.A., 2010. Political economy of
marine reserves: understanding the role of opportunity costs. Proc. Natl. Acad. Sci. U.
S. A. 107, 18300–18305. https://doi.org/10.1073/pnas.0907365107.

Stevenson, T.C., Tissot, B.N., Walsh, W.J., 2013. Socioeconomic consequences of fishing
displacement from marine protected areas in Hawaii. Biol. Conserv. 160, 50–58.
https://doi.org/10.1016/j.biocon.2012.11.031.

Stewart, R.R., Possingham, H.P., 2005. Efficiency, costs and trade-offs in marine reserve
system design. Environ. Model. Assess. 10, 203–213. https://doi.org/10.1007/
s10666-005-9001-y.

Villa, F., Tunesi, L., Agardy, T., 2002. Zoning marine protected areas through spatial
multiple-criteria analysis: the case of the Asinara Island National Marine Reserve of
Italy. Conserv. Biol. 16, 515–526. https://doi.org/10.1046/j.1523-1739.2002.
00425.x.

White, C., Halpern, B.S., Kappel, C.V., 2012. Ecosystem service tradeoff analysis reveals
the value of marine spatial planning for multiple ocean uses. Proc. Natl. Acad. Sci. U.
S. A. 109, 4696–4701. https://doi.org/10.1073/pnas.1114215109.

Williams, J.C., ReVelle, C.S., Levin, S.A., 2004. Using mathematical optimization models
to design nature reserves. Front. Ecol. Environ. 2, 98–105 doi:.

Williams, J.C., ReVelle, C.S., Levin, S.A., 2005. Spatial attributes and reserve design
models: a review. Environ. Model. Assess 10, 163–181. https://doi.org/10.1007/
s10666-005-9007-5.

Zhang, K., Laffan, S.W., Ramp, D., Webster, E., 2011. Incorporating a distance cost in
systematic reserve design. Int. J. Geogr. Inf. Sci. 25, 393–404. https://doi.org/10.
1080/13658816.2010.517753.

Z.S. Oyafuso, et al. Biological Conservation 241 (2020) 108319

10

https://doi.org/10.1890/03-5136
https://doi.org/10.1073/pnas.1217689110
https://doi.org/10.1016/j.marpol.2013.09.005
https://doi.org/10.1016/j.ocecoaman.2004.04.001
https://doi.org/10.1016/j.ocecoaman.2004.04.001
https://doi.org/10.13140/RG.2.1.2861.5447
https://doi.org/10.1016/j.marpol.2009.02.009
https://doi.org/10.1016/j.marpol.2009.02.009
https://doi.org/10.1890/05-1845
https://doi.org/10.1890/05-1845
https://doi.org/10.1111/j.1523-1739.2008.00896.x
https://doi.org/10.1111/j.1755-263X.2008.00005.x
https://doi.org/10.1111/j.1755-263X.2008.00005.x
https://doi.org/10.1016/j.marpol.2009.02.009
https://doi.org/10.1046/j.1523-1739.1997.96319.x
https://doi.org/10.1890/1051-0761(1998)8[S72:ITPPIF]2.0.CO;2
https://doi.org/10.3354/meps08029
https://doi.org/10.3354/meps08029
https://doi.org/10.1504/IJETM.2006.008255
https://doi.org/10.1504/IJETM.2006.008255
https://doi.org/10.1016/j.marpol.2014.03.001
https://doi.org/10.1038/35012251
https://doi.org/10.1016/j.jenvman.2016.01.025
http://refhub.elsevier.com/S0006-3207(19)30396-9/sbref0210
http://refhub.elsevier.com/S0006-3207(19)30396-9/sbref0210
http://refhub.elsevier.com/S0006-3207(19)30396-9/sbref0210
https://doi.org/10.1016/j.marpol.2012.03.002
https://doi.org/10.1016/j.marpol.2010.07.001
https://doi.org/10.1017/S0376892902000267
https://doi.org/10.1016/j.icesjms.2005.04.005
https://doi.org/10.1016/j.tree.2006.10.003
http://refhub.elsevier.com/S0006-3207(19)30396-9/sbref0240
http://refhub.elsevier.com/S0006-3207(19)30396-9/sbref0240
https://doi.org/10.1007/s11160-016-9442-1
https://doi.org/10.1016/j.fishres.2017.06.011
https://doi.org/10.1016/j.marpol.2018.11.016
https://doi.org/10.1016/j.marpol.2018.11.016
https://doi.org/10.1093/forestscience/49.4.608
https://doi.org/10.1111/j.1523-1739.2006.00426.x
https://doi.org/10.1111/j.1523-1739.2004.00450.x
https://doi.org/10.1111/j.1523-1739.2004.00450.x
http://refhub.elsevier.com/S0006-3207(19)30396-9/sbref0275
http://refhub.elsevier.com/S0006-3207(19)30396-9/sbref0275
http://refhub.elsevier.com/S0006-3207(19)30396-9/sbref0280
http://refhub.elsevier.com/S0006-3207(19)30396-9/sbref0280
http://refhub.elsevier.com/S0006-3207(19)30396-9/sbref0285
http://refhub.elsevier.com/S0006-3207(19)30396-9/sbref0285
https://doi.org/10.1073/pnas.0907365107
https://doi.org/10.1016/j.biocon.2012.11.031
https://doi.org/10.1007/s10666-005-9001-y
https://doi.org/10.1007/s10666-005-9001-y
https://doi.org/10.1046/j.1523-1739.2002.00425.x
https://doi.org/10.1046/j.1523-1739.2002.00425.x
https://doi.org/10.1073/pnas.1114215109
http://refhub.elsevier.com/S0006-3207(19)30396-9/sbref0315
http://refhub.elsevier.com/S0006-3207(19)30396-9/sbref0315
https://doi.org/10.1007/s10666-005-9007-5
https://doi.org/10.1007/s10666-005-9007-5
https://doi.org/10.1080/13658816.2010.517753
https://doi.org/10.1080/13658816.2010.517753

	Understanding biological and socioeconomic tradeoffs of marine reserve planning via a flexible integer linear programming approach
	Introduction
	Methods
	Spatial domain
	Data sources
	Binary integer linear programming model
	Objective functions
	Structural constraints (spatial budgets)
	Solving the linear programming model

	Compromise solution

	Results
	Opportunity cost scenarios
	Effects of only including indicator species in reserve optimizations
	Effects of domain scale on the equity of solutions
	Compromise between opportunity cost and conservation value
	Reserve placements

	Discussion
	mk:H1_17
	Acknowledgements
	References




